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Abstract

Malaysia generates substantial agricultural residues annually, endowing the country with sig-
nificant biomass energy potential. Palm oil biomass stands out as a promising feedstock. How-
ever, its high humidity, bulkiness, low energy density, and dispersed resource locations (mills)
pose challenges. A network that consisting collection facilities incorporating pretreatment op-
erations as intermediaries between mills and biorefineries is a plausible solution. Nevertheless,
the facility locations directly impact travel distance, overall expenses, and the nearby population.
Moreover, vehicle routing during biomass collection influences transportation costs and carbon
dioxide (CO2) emissions. Consequently, this research designs a model to address the location-
routing intricacies within a two-echelon biomass supply chain. The model operates as a multi-
objective optimization framework, encompassing three-dimensional sustainability assessment,
quantified respectively as total cost minimization, CO2 emissions reduction, and minimization
of the population affected. The research initially optimizes each objective function individu-
ally and subsequently advances to multi-objective optimization employing the weighted sum
approach. While single-objective optimization yields optimal outcomes for each dimension, en-
hancements in one aspect may hinder performance in others. Nonetheless, the multi-objective
optimization provides insight into the trade-offs among the sustainability objectives. The com-
putational findings demonstrate the model could adapt the network configuration in alignment
with distinct sustainability aspirations.

Keywords: biomass supply chain; location-routing problem; mixed integer nonlinear program-
ming; palm oil biomass; two-echelon location-routing model.
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1 Introduction

As a major palm oil producer, Malaysia generates substantial quantities of palm oil empty
fruit bunches (EFB) biomass, offering a promising source of biomass energy. Increasing biomass
energy production will enhance the clean energy composition in Malaysia’s overall energy gener-
ation, supporting Malaysia’s pledge for sustainable development. However, there are numerous
logistical and operational challenges to maximizing the benefits of biomass energy. The EFB re-
source sites that spread across rural and semi-urban regions might pose collection difficulties.
The low energy density, high humidity, and bulky nature of biomass also lead to storage space
issues, transportation difficulties, and reduced combustion efficiency. Hence, an efficient Biomass
Supply Chain (BSC) is crucial. The architecture of the supply chain network is crucial to driving
the profitability and productivity of the supply chain [28]. The motivation of this study is to ad-
dress the challenges by optimizing the BSC network and supporting Malaysia’ s clean energy and
sustainability commitments.

The BSC could be categorized into upstream, midstream, and downstream segments. The
upstream includes biomass resources, pretreatment facilities, and storage centers [3, 20]. The
midstream involves biorefineries and mixing plants [20], while the downstream covers biofuel
storage and distribution to consumers [22]. The upstream segment is particularly interesting to
examine, as it differs significantly from the middle and downstream segments, which resemble
petroleum industry processes [3]. This study focuses on optimizing the BSC network, particu-
larly the upstream and midstream segments, by delving into a network consisting of collection
facilities with pretreatment operations. These collection centers can alleviate the challenge posed
by dispersed resource sites. Pretreatment, such as pelletizing, reduces humidity and compresses
biomass, thereby increasing its energy density [25]. Improved physical characteristics and energy
density enhance storage, transportation, and combustion efficiency. The investigated BSC network
involves palm oil mills (feedstock sources), collection facilities (intermediaries), and biorefineries
(energy conversion).

The locations of collection facilities significantly affect the biomass supply chain by influenc-
ing travel distances and overall costs. Properly positioned facilities reduce operational costs by
reducing the need for extra storage and lowering environmental impact through shorter trans-
portation routes. In supply chain design, vehicle route planning is another major concern [27].
Poorly planned routes not only increase operational costs but also contribute to air pollution [31].
Efficient routes cut down transportation time and costs, improve resource utilization, and reduce
CO2 emissions. Operation Research (OR) principles address these challenges as Facility Loca-
tion Problems (FLP) and Vehicle Routing Problems (VRP), respectively. While these problems
are interconnected and contribute to the effectiveness of the BSC network, they are often tackled
separately, potentially leading to suboptimal solutions [5]. Hence, this research aims to solve FLP
and VRP simultaneously as a location-routing problem (LRP).

Generally, the objective of the BSC model is to establish an efficient framework that meets cus-
tomer demand while minimizing costs. However, decisions within the BSC also impact the en-
vironment and society. Collection facilities might generate noise and release chemicals, making
them unsuitable for placement in densely populated areas. Therefore, the BSC model should
prioritize the least population areas for facility establishment to minimize the concentration of
negative social impacts on communities (social performance). Furthermore, the substantial con-
tribution of transportation-related CO2 emissions to global warming should not be overlooked.
Hence, the network design should incorporate route planning that minimizes total CO2 emissions
(environmental performance).
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In this study, the logistical and operational challenges associated with the usage of EFB as
biomass energy in BSC Malaysia is examined. The characteristics of biomass, including bulki-
ness, high humidity, and low energy density, combined with its distributed resource sites cause
problems for collection, storage, transportation, and combustion efficiency. A BSC consisting of
collection facilities equipped with pretreatment operations might be a plausible solution. Then,
the associated collection facility placement and truck routing problems impact the overall perfor-
mance of BSC. Suboptimal solutions may arise from handling these two core BSC research prob-
lems individually. Hence, this study aims to develop an LRPmodel that simultaneously optimizes
the location of collection facilities and transportation routes to enhance the BSC’ s economic, en-
vironmental, and social performance.

A mixed-integer nonlinear programming model is introduced to address the LRP within a
two-echelon BSC network comprising pretreatment operations. The model optimizes the collec-
tion facility locational and truck routing decisions while considering sustainability through cost
minimization (economic performance), total CO2 minimization (environmental performance),
and total affected population minimization (social performance). In summary, this research es-
tablishes a distinct multi-objective two-echelon LRP (MO2ELRP) model for a palm oil EFB BSC
network and quantifies the pretreatment operations into the model, setting it apart from a general
two-echelon LRP (2ELRP) model.

This study proposes a novel approach in the context of BSC network optimization to optimize
facility locations and truck routing decisions simultaneously. Additionally, themodel offers a fun-
damental structure for managing the BSC network with one or various sustainability objectives,
an aspect that has been less explored in previous LRP research within BSC contexts. Thirdly, the
suggested model uniquely quantifies the pretreatment operations which makes it a distinction
from the general LRP model. Finally, the model may be used to optimize any other BSC networks
of various facilities utilizing diverse technologies.

This research has contributed to the BSC and LRP research in the following ways. The de-
veloped two-echelon network model including pretreatment operations enhances the practical
applicability and effectiveness of model optimization in solving LRP in the context of BSC. By
taking into consideration economic, environmental, and social performances, the model offers a
framework for managing sustainable BSC. Since the model optimizes the locational and routing
decisions simultaneously, it improves the overall BSC performance. Lastly, considering the modi-
fications in biomass properties brought about by the pretreatment operation, the model has been
adapted to the process in BSC and makes it different from the general LRP model.

The originality of the research lies in the holistic and versatility of the model. The integration
of economic, environmental, and social performance goals into the LRP optimization model in
the BSC context represents a holistic sustainable advancement in BSC investigation areas. The
model could be applied to various BSC networks employing different technologies demonstrating
its versatile utility and innovation. Further, this research has a foundational impact on future BSC
research to incorporatemultiple sustainability objectives and pretreatment operations into solving
the LRP in the BSC.

The paper is structured into six sections: Section 2 provides an overview of optimization mod-
els in the BSC field, Section 3 defines the problem and assumptions, Section 4 presents the math-
ematical model, Section 5 outlines the results of computational experiments, and the final section
presents conclusions and limitations.
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2 Literature Review

In recent years, there has been a substantial body of research exploring the design of the
Biomass Supply Chain (BSC) network. Most BSC studies have focused on various aspects of
decision-making, such as resource allocation, facility location, and vehicle routing. Among these
decisions, determining optimal facility locations holds paramount importance in shaping the net-
work’s structure. To address this challenge, Zhao and Li [58] employed binary integer program-
ming to pinpoint the suitable location for a power plant, while Salleh et al. [38] utilized a least-
squares regression approach for locating a biomass processing facility. Some researchers have
addressed Facility Location Problems (FLP)while assessing crop availability by combiningmulti-
criteria analysis with Geographic Information System (GIS) techniques, such as assessing the
availability of corn stover and wheat straw [37], estimating forest residue supply [53], and evalu-
ating manure availability from farms and wood density [17].

Research articles focused solely on the allocation problem have been documented as follows.
While taking into account the limitation of vehicle capacity, themodel ofHowandLam [13] solved
the biomass allocation problem. Wang et al. [52] formulated a model to estimate biomass supply
and determine co-firing ratios for retrofit power plants. She et al. [44] explored wood residue
salvaging in both sequential and integrated scenarios. Rivera-Cadavid et al. [33] created a model
to decide which sugarcane biomass plots should be collected daily. Tiammee and Likasiri [48]
addressed distribution and disposal issues related to corn residue.

The modeling of the location-allocation problem has also garnered substantial attention from
researchers. Serrano-Hernandez and Faulin [43] developed a model to ascertain storage policies
and determine biorefinery capacities and numbers. Saadati and Hosseininezhad [35] devised a
network design for the bioethanol supply chain, taking into account road and railway transport.
Sarker et al. [40, 41] addressed BSC issues involving resource sites, hubs, and reactors. Several
studies have incorporated GIS into their research. Zhang et al. [56] combined GIS with simula-
tion and optimization, while Zhang et al. [57] integrated GIS with optimization. Soha et al. [46]
applied GIS and logistics analysis to optimize biogas supply chains. Other combinations of tech-
niques found in the literature include combining GISwith nonlinear programming and evolution-
ary strategies [42], using GIS with the p-median model [15], integrating GIS with mixed-integer
programming [36], and coupling GIS with robust optimization [32].

The challenges posed by vehicle routing and scheduling have captured significant attention
due to their considerable contribution to overall expenses. In this arena, Torjai and Kruzslicz
[50] established a model for biomass delivery schedules, while Soares et al. [45] synchronized
truck pickup and delivery operations. Vahdanjoo et al. [51] utilized a vehicle routing model to
solve the bale collection problem. Pinho et al. [30] proposed a predictive vehicle routing control
model. Fokkema et al. [10] tackled a biogas logistic problem using a continuous-time inventory-
routing model. Cárdenas-Barrón and Melo [6] examined the reverse logistics of waste vegetable
oil collection,modeling it as a selective andperiodic inventory-routing problem. Malladi et al. [23]
investigated transshipment and routing plans for the forest supply chain, while Zamar et al. [55]
designed routes for sawmill residue collection, considering biomass availability and humidity.

Researchers have started to delve into Location-Routing Problems (LRP), recognizing the in-
herent connection between FLP and Vehicle Routing Problems (VRP) (Table 1). In this context,
Cao et al. [5] proposed solving FLP and VRP for the BSC concurrently. Morales Chavez et al. [7]
developed a stochastic location-inventory-routing model for BSC. Habibi et al. [12] aimed to min-
imize costs in the location-inventory-routing model for the microalgae biofuel network. Working
within a similar network, Asadi et al. [2] optimized economic and environmental performance.
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A few studies have explored the LRP involving two echelons, exemplified by Li et al. [21] and
Cao et al. [4]. However, Li et al. [21] focused on a network comprising a single end-user (power
plant), while the design by Cao et al. [4] involved multiple customers (biorefineries).

In contrast, only a handful of articles have considered incorporating pretreatment operations
into the network structure. San Juan et al. [39] developed amodel that integrates feedstock quality
and pretreatment operations. De Meyer et al. [9] quantified the pretreatment operations and
biomass loss within their BSC model. Arabi et al. [1] formulated a network design considering
pretreatment and deterioration rates in an algae-based supply chain.

Unsurprisingly, economic performance has been the central focus of the articles discussed thus
far, given its pivotal role in BSC management. Nonetheless, environmental and social objectives
can potentially conflict with economic goals. Few studies have addressed both economic and en-
vironmental performance in BSC. From the literature, minimizing total cost is often paired with
minimizing CO2 emissions, with studies focusing on emissions from transportation only [35, 58],
transportation and combustion [39], or transportation and distribution facilities [2]. Other perfor-
mancemetrics in the literature includemaximizing net revenues and greenhouse gas savings [44],
maximizing profit and carbon absorption [1], and maximizing profit along with environmental
sustainability satisfaction[13]. Moreover, the social sustainability aspects of BSC have been over-
looked in most existing research. Few articles, such as those by Tiammee and Likasiri [48] and
Morales Chavez et al. [7], have taken a broader view by designing network structures that account
for all three dimensions, including the social dimension. Among the most common economic ob-
jectives is the minimization of total costs across the network. Similarly, the maximization of job
creation is a prevalent social performance goal, and the assessment of total CO2 emissions holds
a significant influence in evaluating environmental performance.

Most articles addressing LRP in BSC have primarily targeted optimizing economic perfor-
mance in Table 1. However, only a limited number of LRP articles have holistically considered
all three dimensions. For instance, Asadi et al. [2] worked on economic and environmental per-
formance, aiming to minimize total cost and system pollution. The LRP study encompassing sus-
tainability from all dimensions is the work byMorales Chavez et al. [7], who designed a model to
maximize net present value, minimize environmental impact, and maximize positive effects like
job creation and food security.

An analysis of the existing literature reveals several gaps:

a) Few studies have tackled the solution of LRP within BSC, and fewer still have ventured into
the realm of 2ELRP.

b) Research articles addressing the sustainability of solving LRP in BSC are lacking.

c) Existing LRP research in BSC rarely includes goals of minimizing CO2 emissions and reduc-
ing the affected population.

d) Only a minority of research articles have incorporated pretreatment operations into their
network models.
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Table 1: Articles related to location-routing problems in the biomass supply chain.

Reference LD AD RSD PO Eco Env Soc Obj

[4] • • • • Min total cost
[5] • • • • Min total cost
[21] • • • • Min total cost
[12] • • • • Min total cost
[2] • • • • • • Min total cost,

Min total system pollution
[7] • • • • • • Max net present value,

Min environmental impact,
Max positive impact
(job creation and food security)

Note: LD = Locational Decision, AD = Allocation Decision, RSD = Routing or Scheduling Decision,
PO = Pretreatment Operation, Eco = Economic Performance, Env = Environmental Performance,
Soc = Social Performance, Obj = Objectives

This research aims to bridge these gaps and make practical and academic contributions. It
offers an industry and policy-oriented framework for BSC, aiding strategic and operational de-
cisions while considering sustainability. Strategic decisions encompass optimal facility locations
and numbers, while operational decisions involve vehicle routing, vehicle numbers, biomass allo-
cation, pellet production, and allocation. Academically, this proposed model can be adapted for
both single and multi-objective scenarios, serving as a foundation for a sustainable LRP model in
BSC. This model can also be utilized for any two-echelon BSC network seeking to optimize facility
locations, biomass distribution, and vehicle routing. Notably, this 2ELRP model has been tailored
to the specifics of BSC by quantifying pretreatment operations within the network, setting it apart
from a generic 2ELRP model.

The proposed research builds upon thework of Cao et al. [4], who addressed a single-objective
2ELRP. Ourmodel introduces several distinctions and enhancements, contributing to the formula-
tion of an optimizationmodel that more accurately reflects BSC scenarios. First, the presentmodel
takes a holistic approach to sustainability, addressing the multi-objective problem rather than op-
timizing a single economic objective function. This approach enables the model to address net-
work optimization considering the scenarios of different sustainable goals. Notably, this research
incorporates constraints concerning connection paths and facility assignments, truck load capac-
ities, biomass and pretreated biomass flow conservation, and subtour elimination. The inclusion
of additional constraints is essential as they could illustrate the interconnections among facility
assignment, connecting path and vehicle loads, and biomass flows, reflecting the BSC logistical
and operational processes. Additionally, the proposed BSC network encompasses pretreatment
operations within the facilities, and it is included as a parameter in the model.

Our previous work provided a comprehensive review of relevant literature and investigated a
single-echelon LRP within the BSC network, involving two players: mills and collection centers
[54]. Based on the preceding structure, this manuscript extends the analysis to mainly examine a
two-echelon BSC network, incorporating three players: mills, collection centers, and biorefineries.
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3 Problem Definition and Assumptions

This section describes the proposed model’s problem definition, notations, and assumptions.

3.1 Problem definition

Figure 1 depicts the key players in the examined BSC associated with palm oil: palm oil mills,
collection facilities, and biorefineries. The palm oil mills serve as the primary resource sites for
feedstock. In this study, the utilized feedstock is wet short fiber (WSF), obtained through the sepa-
ration and sieving of EFB. To address challenges arising from dispersed resources, high humidity,
and low energy density in WSF, this research suggests establishing collection facilities equipped
with pelletizing technology. This technology, implemented within the collection facilities, trans-
forms WSF into solid biofuel (pellets). Subsequently, these produced pellets are transported to
the biorefineries.

Figure 1: An overview of the investigated biomass supply chain.

Figure 2 provides a visual representation of the studied network configuration using nodes
and arcs. The initial echelon network encompasses the palm oil mills and collection facilities,
while the second echelon network consists of collection facilities and biorefineries. The strategic
decisions pertaining to the collection facility locations are of utmost importance in shaping the
network structure, impacting overall costs and the nearby population. Furthermore, the routing
decisions made for trucks involved in collecting WSF and transporting pellets play a pivotal role
in influencing both the total cost and CO2 emissions.
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Figure 2: The depiction of the location-routing network.

The objective of this study is to optimize the simultaneous decisions regarding the locations
of collection facilities and vehicle routing. This research integrates economic, social, and environ-
mental sustainability by optimizing objective functions related to total cost, affected population,
and CO2 emissions. These combined considerations classify the research problem as a Multi-
Objective Two-Echelon Location-Routing Problem (MO2ELRP). The model is formulated using
Mixed-Integer Nonlinear Programming (MINLP). Notations for sets, decision variables, and pa-
rameters utilized in the model are detailed in Table 2.

Table 2: Notations used in the model.

Notation Description
Sets

F Mills
C Collection facilities
B Biorefineries
H Trucks in the first echelon
G Truck in the second echelon

Decision variables
zi 1, if collection facility i is opened; 0, otherwise
αij 1, if mill i is assigned to collection facility j; 0, otherwise
βij 1, if collection facility i is assigned to biorefinery j; 0, otherwise.
xijh 1, if truck h travels from node i to node j; 0, otherwise
yijg 1, if truck g travels from node i to node j in the first echelon; 0, otherwise.
LPF

ijh Loading of truck h from node i to node j in the first echelon
LPS

ijg Loading of truck g from node i to node j in the second echelon
qCj Quantity of biomass collected at collection facility j

qCP
j Quantity of biomass pretreated at collection facility j

Parameters
qGi Quantity of EFB produced at mill i, metric ton/day

Continued on next page
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Table 2: Notations used in the model (continued).

Notation Description
qFi Quantity of WSF generated at mill i, metric tons/day
tFi Capacity of mill i, metric tons FFB/hour
tCA
i Annual pretreatment capacity of collection facility i, metric tons/year
tCi Daily pretreatment capacity of collection facility i, metric tons/day
tBi Capacity of biorefinery i, metric tons/day
cHh Capacity of truck h, metric tons
cGg Capacity of truck g, metric tons
dFij Distance between nodes i and j in the first echelon, km
dSij Distance between nodes i and j in the second echelon, km
SF Scale factor for pelletizing facilities
SZb Size or capacity of a benchmark collection facility, metric tons/year
SZa Size or capacity of a collection facility based on an assumption, metric tons/year
ECb Establishment cost for setting up a collection facility with a benchmark capacity,

USD/year
ECa Establishment cost for setting up a collection facility based on assumed capacity,

USD/year
fECA
i Yearly cost of opening collection facility i, USD/year
fEC
i Daily cost of opening collection facility i, RM/day
fPC
i Unit cost of pretreated the biomass, RM/metric tons
eRH Fuel consumption rate of truck h in the first echelon, L/km
eRG Fuel consumption rate of truck g in the second echelon, L/km
eP Fuel price, RM/L
vHh Transportation cost for truck h, RM/km
vGg Transportation cost for truck g, RM/km
nH Number of trucks in the first echelon
nG Number of trucks in the second echelon
ρG Biomass generation rate, EFB/FFB
ρMO Rate for mulching
θS Separating and sieving rate, WSF/EFB
θP Pelletizing rate, pellets/WSF
γFh1 CO2 emission rate of truck h per kilometer, kgCO2/km
γSg1 CO2 emission rate of truck g per kilometer, kgCO2/km
γFh2 CO2 emission rate of truck h per metric tons per kilometer, kgCO2/metric tons-km
γSg2 CO2 emission rate of truck g per metric tons per kilometer, kgCO2/metric tons-km
Popi The surrounding population at the collection facility i, people
DB

j Demand at biorefinery j

dW Number of working days
w Daily operating hours, hour
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3.2 Assumptions

To provide a structured framework for the model and establish foundational conditions for its
formulation, the following assumptions are considered:

1. Open collection facilities have the capability to serve multiple mills, whereas each mill can
only be associated with a single open collection facility.

2. A number of collection facilities are able to fulfill the demand of a given biorefinery, with
each open collection facility being restricted to a single biorefinery assignment.

3. Within the first echelon, the vehicle routing commences at an open collection facility and
concludes at the same facility after covering the assigned mills. Notably, no direct paths
exist between collection facilities, and each mill must be visited exactly once.

4. In the second echelon, truck routes initiate from a biorefinery and return to the same biore-
finery after visiting the designated collection facilities. No flow is permitted between biore-
fineries. Visitation is solely restricted to open collection facilities, and each facility must be
visited only once.

5. Truck loading remains within the defined capacity of the vehicle. A homogeneous fleet of
vehicles is considered.

6. The potential locations, capacities, and the populations residing in the vicinity of collection
facilities are all assumed to be known.

4 Mathematical Model

This section will discuss the objective functions and constraints of the model, building upon
the problem definition and the established assumptions.

4.1 The objective functions

The objective functions related to sustainable objectives encompassing three dimensions are
explored. Economic performance, which has traditionally captivated the attention of numerous
industry stakeholders, is quantified through the minimization of costs (1),

f1 =
∑
i∈C

fEC
i zi +

∑
i∈C

fPC
i qCi +

∑
i∈F∪C

∑
j∈F∪C

∑
h∈H

vHh dFij xijh +
∑

i∈C∪B

∑
j∈C∪B

∑
g∈G

vGg dSij yijg. (1)

This equation incorporates four distinct components: the cost associated with establishing col-
lection facilities (the initial term), the expenses linked to pretreatment (pelletizing) (the second
term), and transportation costs (the third and fourth terms).

In addressing the social aspect, this study attempts to mitigate the adverse effects of facility
placement on the local community. Candidate facility locations with fewer surrounding popula-
tions are preferable choices. According to (2), it is less likely that densely residential locations will
be chosen for the facility establishment,

f2 =
∑
i∈C

Popi zi. (2)
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Indirectly, the fewer individuals impacted by locational decisions, the lesser the concentration
of negative social effects on the communities. This concept draws inspiration from the research
conducted by Tirkolaee et al. [49], which tackled Location-Routing Problems (LRP) in other areas
of application.

Addressing the environmental component, this study will concentrate on the CO2 emissions
stemming from transportation activities, assuming that emissions from pelletizing technology are
negligible. The investigation will emphasize the influence of loaded and empty trucks on CO2

emissions (3),

f3 =
∑
i∈C

∑
j∈F

∑
h∈H

γFh1 dFij xijh +
∑
i∈B

∑
j∈C

∑
g∈G

γSg1 dSij yijg

+
∑
i∈F

∑
j∈F∪C

∑
h∈H

γFh2 dFij LP
F
ijh +

∑
i∈C

∑
j∈C∪B

∑
g∈G

γSg2 dSij LP
S
ijg.

(3)

The first term of the equation pertains to CO2 release linked to travel distance, applicable when
trucks in the first echelon depart from collection facilities without any cargo. The second term
mirrors a similar scenario involving empty trucks departing from biorefineries within the second
echelon. The third term elaborates on emissions from trucks in the first echelon, considering both
carrying loads and travel distance. The fourth term captures the emissions scenario of loaded
trucks in the second echelon. The notion of directly correlating emissions of loaded trucks with
travel distance and truck loading draws inspiration from the work of Roni et al. [34].

4.2 The first echelon constraints

The constraints applicable to the initial echelon network encompassing mills and collection
facilities are outlined below. Constraint (4) guarantees that each mill is visited precisely once by
a truck. Constraint (5) ensures that the total number of trucks entering and departing from mills
(or collection facilities) are the same. Constraint (6) signifies that each truck can undertake the
journey from a mill to a collection facility at most once.∑

j∈F∪C

∑
h∈H

xijh = 1, ∀i ∈ F, (4)

∑
i∈F∪C

xijh =
∑

i∈F∪C

xjih, ∀j ∈ F ∪ C, ∀h ∈ H, (5)∑
i∈F

∑
j∈C

xijh ≤ 1, ∀h ∈ H. (6)

Constraint (7) prohibits the occurrence of loop routes for each node. Constraint (8) prevents
direct connections between collection facilities within the first echelon. Constraint (9) commands
that an open collection facility must serve at least one mill. Constraint (10) ensures that the total
amount of WSF collected from the assigned mills should be less than the capacity of the collection
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facility.

xijh = 0, ∀i, j ∈ F ∪ C, i = j, ∀h ∈ H, (7)∑
h∈H

xijh = 0, ∀i, j ∈ C, (8)∑
j∈F

∑
h∈H

xijh ≥ zi, ∀i ∈ C, (9)

∑
i∈F

qFi αij ≤ tcjzj , ∀j ∈ C. (10)

Constraint (11) introduces the potential for a route (i, j) to exist between amill and a collection
facility if an assignment is made, whereas Constraint (12) pertains to a route (j, i). Constraint (13)
serves as a constraint aimed at preventing subtours, ensuring that two mills without congruent
assignments do not have a connecting route.∑

h∈H

xijh ≤ αij , ∀i ∈ F, ∀j ∈ C, (11)∑
h∈H

xjih ≤ αij , ∀i ∈ F, ∀j ∈ C, (12)∑
h∈H

xijh + αik +
∑

m∈C,m̸=k

αjm ≤ 2, ∀i, j ∈ F, ∀k ∈ C. (13)

Constraint (14) preserves the flow balance of incoming and outgoing trucks carrying loads
to the amount of WSF available at each mill. Constraint (15) indicates that the carrying loads of
a truck should be less than its capacity. Constraint (16) elaborates that the total loads of trucks
entering a collection facility equal the amount of WSF collected from assigned mills.∑

j∈F∪C

∑
h∈H

LPF
ijh −

∑
j∈F∪C

∑
h∈H

LPF
jih = qFi , ∀i ∈ F, (14)

LPF
ijh ≤ cHh xijh, ∀i, j ∈ F ∪ C, i ̸= j, ∀h ∈ H, (15)∑

j∈F

∑
h∈H

LPF
jih =

∑
j∈F

αjiq
F
j , ∀i ∈ C. (16)

Constraints (17) and (18) establish constraints on the permissible load capacities. Constraint
(19) enforces that trucks must depart from the collection facility without carrying any load. Con-
straint (20) asserts that the quantity ofWSF received by the collection facilitymatches the total load
of trucks entering the facility. Constraint (21) pertains to the production of pretreated biomass
(pellets) by the collection facility.

LPF
ijh ≤

(
cHh − qFj

)
xijh, ∀i ∈ F ∪ C, ∀j ∈ F, ∀h ∈ H, (17)

LPF
ijh ≥ qFi xijh, ∀i ∈ F, ∀j ∈ F ∪ C, ∀h ∈ H, (18)∑

j∈F

LPF
ijh = 0, ∀i ∈ C, ∀h ∈ H, (19)

qCj =
∑
i∈F

∑
h∈H

LPF
ijh, ∀j ∈ C, (20)

qCP
j = θP qCj , ∀j ∈ C. (21)
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4.3 The second echelon constraints

The constraints pertaining to the second echelon network involving collection facilities and
biorefineries are outlined as follows. Constraint (22) ensures that an open collection facility is
visited exactly once. Constraint (23) commands that a biorefinery can only be connected to a
collection facility if the collection facility is operational. Constraint (24) guarantees that at least one
truck travels from a collection facility to each biorefinery. Constraint (25) maintains the balance
between the number of trucks entering and leaving a collection facility (or biorefinery). Constraint
(26) stipulates that each truck can make the journey from a biorefinery to a collection facility at
most once. ∑

j∈C∪B

∑
g∈G

yijg = zi, ∀i ∈ C, (22)

yijg ≤ zj , ∀i ∈ B, ∀j ∈ C, ∀g ∈ G, (23)∑
g∈G

∑
j∈C

yijg ≥ 1, ∀i ∈ B, (24)

∑
j∈C∪B

yijg =
∑

j∈C∪B

yjig, ∀i ∈ B ∪ C, ∀g ∈ G, (25)

∑
i∈B

∑
j∈C

yijg ≤ 1, ∀g ∈ G. (26)

Constraint (27) prohibits the occurrence of loop routes. Constraint (28) signifies the absence of
direct connections between biorefineries within the second echelon. Constraint (29) dictates that
an open collection facility can only be allocated to a single biorefinery. Constraint (30) guarantees
that the quantity of pellets collected from the designated collection facilities remains within the
capacity of the biorefinery.

yijg = 0, ∀i, j ∈ B ∪ C, i = j, ∀g ∈ G, (27)∑
g∈G

yijg = 0, ∀i, j ∈ B, (28)

∑
j∈B

βij = zi, ∀i ∈ C, (29)

∑
i∈C

qCP
i βij ≤ tBj , ∀j ∈ B. (30)

Constraint (31) establishes the potential for a route (i, j) to exist when a collection facility
is assigned to a biorefinery, while Constraint (32) employs a similar concept for the route (j, i).
The subtour elimination constraint (Constraint (33)) eliminates the connection path between two
collection facilities if they are assigned to different biorefineries.∑

g∈G

yijg ≤ βij , ∀i ∈ C, ∀j ∈ B, (31)

∑
g∈G

yjig ≤ βij , ∀i ∈ C, ∀j ∈ B, (32)

∑
g∈G

yijg + βik +
∑

m∈B,m̸=k

βjm ≤ 2, ∀i, j ∈ C, ∀k ∈ B. (33)
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Constraint (34) is the flow conservation constraint for pellets produced at the collection facility.
Constraint (35) indicates the carrying loads of a truck should not be more than the capacity of the
truck. Constraints (36) and (37) are the bounding constraints for the truck’ s carrying loads.
Constraint (38) reflects that a truck is empty when it departs from a biorefinery.∑

j∈C∪B

∑
g∈G

LPS
ijg −

∑
j∈C∪B

∑
g∈G

LPS
jig = qCP

i ,∀i ∈ C, (34)

LPS
ijg ≤ cGg yijg, ∀i, j ∈ C ∪B, i ̸= j, ∀g ∈ G, (35)

LPS
ijg ≤

(
cGg − qCP

j

)
yijg, ∀i ∈ C ∪B, ∀j ∈ C, ∀g ∈ G, (36)

LPS
ijg ≥ qCP

i yijg, ∀i ∈ C, ∀j ∈ C ∪B, ∀g ∈ G, (37)∑
j∈C

LPS
ijg = 0, ∀i ∈ B, ∀g ∈ G. (38)

Constraint (39) shows the pellets received by a biorefinery equals the total carrying loads of
trucks entering the biorefinery. Constraint (40) ensures the demand for a biorefinerymust bemet.
Constraints (41) to (49) are the constraints for the decision variables.

qBj =
∑
i∈C

∑
g∈G

LPS
ijg, ∀j ∈ B, (39)

qBj ≥ DB
j , ∀j ∈ B, (40)

zi ∈ {0, 1} , ∀i ∈ C, (41)
αij ∈ {0, 1} , ∀i ∈ F, ∀j ∈ C, (42)
βij ∈ {0, 1} , ∀i ∈ C, ∀j ∈ B, (43)
xijh ∈ {0, 1} , ∀i, j ∈ F ∪ C, ∀h ∈ H, (44)
yijg ∈ {0, 1} , ∀i, j ∈ C ∪B, ∀g ∈ G, (45)

LPF
ijh ≥ 0, ∀i, j ∈ F ∪ C, ∀h ∈ H, (46)

LPS
ijg ≥ 0, ∀i, j ∈ C ∪B, ∀g ∈ G, (47)
qCj ≥ 0, ∀j ∈ C, (48)

qCP
j ≥ 0, ∀j ∈ C. (49)

4.4 Multi-objective optimization

This study employs the weight sum approach to integrate all objective functions (fi, i = 1, 2, 3)
into a single composite function. Given that the units of the objective functions (fi, i = 1, 2, 3)
may vary, the study individually optimizes each objective function to determine its optimal value
(f∗

i , i = 1, 2, 3). (50) transforms the objective function (Mf) into a dimensionless unit by dividing
the weighted objective functions (ωifi) by their respective optimum values (f∗

i ).

Mf =
∑
i

ωifi
f∗
i

, i = 1, 2, 3. (50)

It is important to note that this research assumes equal importance for each objective, implying
that all weights are equal.
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5 Results and Discussion

This section focuses on the computational results aimed at assessing the proposed MO2ELRP
model. Computational experimentswere carried out on a test case involving ninemills, five poten-
tial collection facilities, and two biorefineries. The objective was to validate themodel’s capacity to
adapt its strategies concerning facility placements, truck routing, and assignments in accordance
with varying sustainable objectives. The test instancewas generated using data pertaining to palm
oil biomass and information regarding pelletizing technology.

5.1 Data and parameter setting

Table 3 shows the processing capacities of mills, with data obtained from Lam et al. [18]. Table
4 outlines the parameters for biomass. The biomass generation rate

(
ρG

)
defines that 0.234 metric

tons of EFB is produced from every metric of fresh fruit bunches (FFB). Using the information in
Table 3 and assuming that the mills are working 16 hours per day (w), the daily amount of EFB
generated in mills could be calculated using (51),

qGi = tFi ρ
Gw, ∀i ∈ F. (51)

Table 3: The mills information.

Mill Cartesian coordinates Processing capacity
(
tFi

)
(metric tons FFB/hour) [18]

F1 (8, 29) 55
F2 (10, 40) 100
F3 (20, 20) 80
F4 (35, 78) 90
F5 (38, 67) 35
F6 (68, 66) 70
F7 (66, 85) 80
F8 (100, 54) 100
F9 (120, 50) 60

Table 4: Parameters for biomass.

Parameter Value Reference

ρG 0.234 EFB/FFB [18]

ρMO 0.9 Assumption

θS 0.24 WSF/EFB [18]

θP 0.33 pellets/WSF [18]

In current practice, the EFB is directly used as mulch [26] or co-compositing with palm oil mill
effluents before mulching [8, 16]. Consequently, this study proposes utilizing a modest portion
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of EFB for biofuel conversion to minimize any substantial impact on the current practices within
the palm oil industry. This study assumes that the mulching rate

(
ρMO

)
will be adjusted to 0.9

which means 90% of generated EFB in mills will be used for mulching at the plantation. The EFB
that remains will then be subjected to a separation and sieving procedure, characterized by a rate
denoted as

(
θS

)
, quantified at 0.24. This process yields wet short fiber (WSF) which serves as the

crucial feedstock for subsequent biofuel conversion. The rate signifies that for every metric ton of
EFB processed, 0.24 metric tons of WSF are generated. The availability of WSF at each mill can be
obtained using (52),

qFi = θS
(
1− ρMO

)
qGi , ∀i ∈ F. (52)

Subsequently, the pelletizing technology with a rate
(
θP

)
of 0.33 at the collection facility is em-

ployed to pretreat the WSF. This rate denotes that for each metric ton of WSF processed, 0.33
metric tons of pellets (solid biofuel) are generated.

Table 5 presents the establishment cost for a collection facility equipped with pelletizing tech-
nology. The information for the 300,000 metric tons/year (SZb) facility serves as the reference
value for calibrating the establishment cost. In this study, it is assumed that the capacity of all
candidate collection facilities is 7,500 metric tons/year

(
SZa, t

CA
i

)
.

Table 5: The yearly opening cost of a facility with pelletization.

Parameter Value Reference/ Note

SZb 300,000 metric tons/year Reference Value (Base) [19]
ECb 3,476,219 USD /year

SZa , tCA
i 7,500 metric tons/year Assumption

ECa , fECA
i 380,076.6015 USD/year Obtained using (53)

(53) [47] computes the establishment cost by adjusting the base capacity value to another using a
scale factor of 0.6 (SF ) for pelletizing facilities [24],

ECa

ECb
=

(
SZa

SZb

)SF

. (53)

Table 6: Parameters for the collection facilities.

Parameter Value Note

tCi 25 metric tons/day Obtained using (54)

fEC
i USD 1266.922 or RM 5574.46* Obtained using (55)

fPC
i RM 176/metric tons Assumption
∗Currency rate: 1 USD = RM4.40 (dated at 31 December 2022)

Table 6 lists the parameters associated with the collection facilities. Assuming 300 working days
per year

(
dW

)
, (54) calculates the daily pelletizing capacity, while (55) computes the daily estab-
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lishment cost,

tCi =
tCA
i

dW
, (54)

fEC
i =

fECA
i

dW
. (55)

Table 7 shows the data related to the candidate collection facilities and their respective popu-
lation density, while Table 8 lists the demand for biorefineries.

Table 7: The locations of candidate collection facilities and their population.

Collection Facility Cartesian Coordinates Population(Popi) (People)

C10 (25, 35) 7964
C11 (45, 85) 8109
C12 (55, 75) 4208
C13 (110, 40) 5263
C14 (118, 23) 4928

Table 8: The demand of biorefineries.

Biorefinery Cartesian coordinates Demand
(
DB

j

)
(metric ton/day)

B15 (31, 50) 14
B16 (100, 27) 4

Tables 9 and 10 denote the information and parameters for the trucks. The trucks (∀h ∈ H,∀g ∈ G)
in this study are homogenous, where their capacities

(
cHh , cGg

)
in both echelons are 15 metric tons.

Table 9: Information related to the trucks of 15 metric tons.

Fuel Information Value Reference

eRH , eRG 0.261 L/km [14]

eP RM 2.15 /L [29]

Table 10: Parameters for the trucks.

Parameter Value Reference/ Note

cHh , cGg 15 metric tons [14]

vHh , vGg RM 0.5612/km Obtained using (56) and (57)

γFh1, γSg1 0.6786 kg/km [14]

γFh2, γSg2 0.41243 kg/metric ton-km [11]
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Equations (56) and (57) are used to obtain the transportation costs
(
vHh , vGg

)
for both echelons.

Equations (58) and (59) denote the number of trucks
(
nH , nG

)
in the first and second echelons,

respectively. The emission rate of CO2 for an empty truck is 0.6786 kg CO2 per km
(
γFh1, γSg1

)
[14], whereas for a loaded truck, it is 0.41243 kg CO2 per metric ton per kilometer

(
γFh2, γSg2

)
[11].

vHh =
(
eRH

) (
eP

)
, (56)

vGg =
(
eRG

) (
eP

)
, (57)

nH = 2

⌈∑
i∈M qFi
cHh

⌉
, (58)

nG = 2

⌈
θP

∑
i∈M qFi
cGg

⌉
. (59)

5.2 Result analysis

The MINLP model in this study was solved using the General Algebraic Modeling System
(GAMS)with the DICOPT optimizer solver. Initially, computational experiments were performed
by solving the model for each individual objective function. This was done to attain the optimal
solution for eachdimension of sustainability and to validate themodel’s ability to adapt its strategy
accordingly. Subsequently, multi-objective optimization was carried out using the weighted sum
approach.

Figure 3: Network of optimizing the first objective function.

Figure 3 illustrates the network structure of optimizing economic performance (total cost min-
imization). The model suggests opening three collection facilities, C10, C12, and C13. Table 11
reports the assignment to these open collection facilities. The mills F1, F2, and F3 are assigned
to C10 in the first echelon. F4, F5, and F6 supply the feedstock for C12. The remaining mills are
assigned to C13. The demand for biorefinery B15 in the second echelon is satisfied by C10 and
C13, while C12 is assigned to B16. Figure 3 shows that C10, C12, and C13 will be allocated 21.116
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metric tons, 17.522 metric tons, and 21.565 metric tons of WSF, respectively. According to the allo-
cation, C10, C12, and C13 will each generate 6.968 metric tons, 5.782 metric tons, and 7.112 metric
tons of pellets. Pellets will then be delivered to B15 and B16 in quantities of 14.085 and 5.782 tons,
respectively.

Figure 3 and Table 11 demonstrate that the first echelon requires six trucks, and the second
requires two trucks to transport the WSF and pellets. Table 11 also provides information regard-
ing the trucks’ routing and carrying loads. The configuration of C10-F1-F2-C10 (0-4.942-13.928)
describes the details of a truck activity. It means that an empty truck departs from C10 to visit F1.
Then, the truck leaves F1 and carries a load of 4.942 metric tons to visit F2. Next, the truck collects
the WSF from F2, increasing the loads to 13.928 metric tons. Lastly, the truck completes its trip
and returns to the initial collection facility, C10.

Figure 4 illustrates that in the network structure designed to minimize the total population im-
pact, C10 and C12 are retained. However, for this network, C14 proves to be a better location than
C13. Under this configuration, C10, C12, and C14 will receive 17.522 metric tons, 17.971 metric
tons, and 24.741 metric tons of WSF, respectively, and produce 5.782, 5.930, and 8.154 metric tons
of pellets, respectively. Additionally, 14.085 metric tons of pellets are transported from C12 and
C14 to B15, while B16 receives all the pellets produced by C10. Table 11 shows that this network
design also requires six trucks and two trucks for the first and second echelons, respectively.

Figure 4: Network of optimizing the second objective function.
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Table 11: The optimal solutions for the different objective functions.

Optimize First Echelon Decisions Second Echelon Decisions

f1
aC10: F1, F2, F3 b(21.116, 6.968) dB15: C10, C13 e(14.085)
C12: F4, F5, F6 (17.522, 5.782) B16: C12 (5.782)
C13: F7, F8, F9 (21.565, 7.117)

cC10-F1-F2-C10 (0-4.942-13.928) fB15-C13-C10-B15 (0-7.117-14.085)
C10-F3-C10 (0-7.189) B16-C12-B16 (0-5.782)
C12-F4-F5-C12 (0-8.087-11.232)
C12-F6-C12 (0-6.29) C13-F8-C13 (0-8.896)
C13-F7-F9-C13 (0-7.189-12.58)

f2 C10: F1, F7, F9 (17.522, 5.782) B15: C12, C14 (14.085)
C12: F2, F8 (17.971, 5.930) B16: C10 (5.782)
C14: F3, F4, F5, F6 (24.741, 8.154)

C10-F1-F7-C10 (0-4.942-12.131) B15-C12-C14-B15 (0-5.93-14.085)
C10-F9-C10 (0-5.391) C12-F2-C12 (0-8.986) B16-C10-B16 (0-5.782)
C12-F8-C12 (0-8.986)
C14-F3-F5-C14 (0-7.189-10.334)
C14-F4-F6-C14 (0-8.087-14.377)

f3 C10: F1, F2, F3 (21.116, 6.968) B15: C10, C11, C12 (15.123)
C11: F4, F5 (11.232, 3.707) B16: C13 (4.744)
C12: F6, F7 (13.478, 4.448)
C13: F8, F9 (14.377, 4.744)

C10-F1-C10 (0-4.942) C10-F2-C10 (0-8.986) B15-C11-C12-B15 (0-3.707-8.154)
C10-F3-C10 (0-7.189) B15-C10-B15 (0-6.968)
C11-F5-F4-C11 (0-3.145-11.232) B16-C13-B16 (0-4.744)
C12-F6-C12 (0-6.29) C12-F7-C12 (0-7.189)
C13-F8-C13 (0-8.986) C13-F9-C13 (0-5.391)

Mf C10: F2, F3, F4 (24.261, 8.006) B15: C10, C12 (14.085)
C12: F1, F6, F7 (18.421, 6.079) B16: C13 (5.782)
C13: F5, F8, F9 (17.521, 5.782)

C10-F2-C10 (0-8.986) C10-F3-C10 (0-7.189) B15-C10-B15 (0-8.006)
C10-F4-C10 (0-8.087) C12-F1-C12 (0-4.942) B15-C12-B15 (0-6.079)
C12-F6-C12 (0-6.290) C12-F7-C12 (0-7.189) B16-C13-B16 (0-5.782)
C13-F5-F8-C13 (0-3.145-12.131)
C13-F9-C13 (0-5.391)

Note:
(a) "C10: F1, F2, F3" denotes that the facility placement at location C10, with F1, F2, and F3 assigned to it.
(b) "(21.116, 6.968)" indicates that the facility will receive 21.116 metric tons of WSF and produce 6.968 metric tons of
pellets.
(c) "C10-F1-F2-C10 (0-4.942-13.928)" means that the route begins from C10 with zero load, travels to F1 to pick up 4.942
metric tons of WSF, then proceeds to F2, and ends the route back to C10 with a total load of 13.928 metric tons of WSF.
(d) "B15: C10, C13" denotes that B15 are assigned with C10 and C13.
(e) "(14.085)" indicates that the biorefinery receives 14.085 metric tons of pellets.
(f) "B15-C13-C10-B15 (0-7.117-14.085)" indicates the truck starts from B15 without any load, transports 7.117 metric tons
of pellets from C13, then travels to C10 and returns to B15 with a total load of 14.085 metric tons of pellets.
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Figure 5 shows that the model increases the collection facilities to four, C10, C11, C12, and C13
with CO2 emissions as the objective function. As a reminder, the third objective function relates
to distance and truck carrying loads, which necessitates the inclusion of four collection facilities
to minimize travel distance. Consequently, more trucks are required to reduce their cargo loads
(Table 11). Thus, the first echelon requires eight trucks, and the second echelon requires three
trucks. Figure 5 also reveals that C11 will receive the least amount of WSF (11.232 metric tons)
and produce the lowest quantity of pellets (3.707 metric tons). C10 receives nearly double the
amount of WSF compared to C11 and produces a corresponding quantity of pellets. C12 and C13
generate 4.448metric tons and 4.744metric tons of pellets, respectively, from theWSF they receive.
B15will receive 15.123metric tons of pellets produced byC10, C11, andC12, while B16will receive
all the pellets produced by C13.

Figure 5: Network of optimizing the third objective function.

The findings presented in Table 12 highlight the inherent trade-offs between the proposed ob-
jective functions. Improving one goal often comes at the expense of compromising other goals.
When the model is oriented towards cost minimization, it incurs a daily cost of RM27682.332,
but this decision impacts 17435 individuals and releases 1355.644 kg CO2 per day. On the other
hand, optimizing the second objective function for the social dimension can reduce the total af-
fected population to 17100 people, but it leads to the release of a maximum of 3411.008 kg CO2.
Furthermore, this network increases expenses by 1.46%, slightly higher than the network aimed
at minimizing the total cost. When the model aims to reduce CO2 emissions , it significantly cuts
CO2 emissions to 747.122 kg CO2 per day. However, the economic and social implications may not
be positive as it incurs the highest cost of RM33128.188 per day and impacts the highest number
of people, totaling 25544 individuals.

887



Foo, F. Y. et al. Malaysian J. Math. Sci. 18(4): 867–901(2024) 867 - 901

Table 12: The values of objective functions.

Function Total Cost Total Population Total CO2 emissions Composite Value
(RM) (People) (kg)

f1 27682.332 17435 1355.644 -

f2 28086.722 17100 3411.008 -

f3 33128.188 25544 747.122 -

Mf 27692.182 17435 1075.14 3.66

Subsequently, this study examines how the model adjusts its facility establishment and truck
routing strategies when optimizing multi-objective functions. Figure 6 illustrates that opening
C10, C12, and C13 is the most favorable strategic decision when all objective functions are equally
important. C10, as the largest receiver of WSF, produces 8.006 metric tons of pellets from 24.261
metric tons of WSF. C12 and C13 convert 18.241 metric tons and 17.521 metric tons of WSF into
6.079 metric tons and 5.782 metric tons of pellets, respectively. Subsequently, B16 collects all the
pellets produced by C13, while the pellets produced by C12 and C10 meet the demand of B15.
Since optimizing environmental performance is also one of the goals, the model suggests employ-
ing 11 trucks and advocates for reduced truck carrying loads (Table 11).

The results of the performance indices presented in Table 12 also underscore the benefits of
concurrently optimizing multiple objective functions. Despite the daily expenses amounting to
RM27692.182, it is only 0.036% more costly than the network optimized solely for economic per-
formance. This slight increase can be interpreted as the cost of a network that simultaneously
considers CO2 emissions and their adverse social impact. Similarly, this network structure impacts
17435 individuals, slightly more than the model focused solely on minimizing the total popula-
tion (f2) , but better than the model optimized for the third objective function (f3) . From the
perspective of reducing CO2 emissions, the CO2 emissions from the multi-objective optimization
network rank as the second lowest.

Figure 6: Network of optimizing the multi-objective functions.
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5.3 Sensitivity analysis

A sensitivity analysis was undertaken to assess the impact of certain parameters (results from
multi-objective optimization using the weighted sum approach). Three parameters were selected
for analysis: transportation cost, CO2 emission rates, and collection facility capacity. These pa-
rameters were varied within a range of [-40%, 40%]with increments of 10% to evaluate the impact
of the uncertainty in parameter values on the supply chain network configuration and decisions
(decision variables). Figures 7, 8, and 9 show the effects of parameter value uncertainty on the
objective functions within the examined ranges and results with significant changes, specifically
at -40% and +40%, are highlighted in Tables 13, 14, and 15.

Figure 7 depicts that the objective functions of total cost and total CO2 emissions are responsive
to changes in transportation cost, whereas the objective function of total population remains unaf-
fected by this parameter. As anticipated, transportation cost parameter significantly influences the
total expenditure in the supply chain: a decrease in transportation cost by -40% results in a 0.59%
reduction in total cost, while an increase of 40% leads to a 0.42% rise in total cost. Transportation
costs are primarily influenced by fuel prices and the fuel consumption rate of trucks. Since fuel
price is subject to uncontrollable factors like global market supply and demand, focus should be
directed towards truck fuel consumption rate. Utilizing fuel-efficient trucks and ensuring regular
maintenance and servicing are advisable measures to mitigate fuel consumption. Older trucks or
those lacking proper maintenance tend to consume more fuel, thereby increasing supply chain
costs. Meanwhile, the fluctuation of total CO2 emissions does not exhibit a predictable pattern
despite its sensitivity to the transportation cost parameter.

Figure 7: Effect of the transportation cost on the objective functions: (a) The first objective function. (b) The second objective function. (c)
The third objective function.

Table 13 illustrates the impact of varying transportation costs by -40% and 40% on network de-
cisions. The sensitivity analysis reveals that changes in transportation costs do not affect locational
decisions, with C10, C12, and C13 consistently chosen for facility placement. Despite variations
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in the transportation cost parameter, constraints imposed by facility capacities, truck availability,
and demand lead to relatively consistent network configurations. While there are minor adjust-
ments in the assignment, routing, biomass allocation, and pellet production decisions (decision
variables), the number of routes in the first echelon remains constant at eight trucks, fully utiliz-
ing available resources. Similarly, decisions in the second echelon exhibit minimal variation across
scenarios, indicating limited sensitivity to transportation cost changes. This suggests that while
the uncertainty in transportation costs may influence certain decisions, locational choices remain
largely unaffected.

Figure 8 illustrates that the total CO2 emissions is significantly influenced by changes in CO2

emission rates. A decrease of 40% leads to a reduction in total CO2 emissions by 39.99%, while an
increase of 40% results in a corresponding rise. The condition of trucks plays a crucial role in CO2

emissions, with aging trucks emitting more CO2 due to exhaust from old engines and higher fuel
consumption. Additionally, the type of fuels used also affects CO2 emission rates. It is suggested
that truck conditions and fuel types are the areas to be monitored in the supply chain to achieve
CO2 emission reduction objectives. Table 14 illustrates the impact on network configurationswhen
the CO2 emission rate was varied by -40% and 40%. Interestingly, the results of decision variables
show no sensitivity to changes in CO2 emission rates, with locational, allocation, production, and
routing decisions remaining consistent with the original emission rates. The rising trend of total
CO2 emissions depicted in Figure 8 is solely attributed to the increase in CO2 emission rates.

Figure 8: Effect of the CO2 emission rates on the objective functions: (a) The first objective function. (b) The second objective function. (c)
The third objective function.
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Table 13: Effect of the transportation cost on network decisions.

Optimize First Echelon Decisions Second Echelon Decisions

-40% C10: F1, F2, F3, F5 (24.261, 8.006) B15: C10, C12 (14.826)
C12: F4, F7, F9 (20.667, 6.820) B16: C13 (5.041)
C13: F6, F8 (15.276, 5.041)

C10-F1-F2-C10 (0-4.942-13.928) B15-C10-B15 (0-8.006)
C10-F3-C10 (0-7.189) C10-F5-C10 (0-3.145) B15-C12-B15 (0-6.820)
C12-F4-C12 (0-8.087) C12-F7-C12 (0-7.189) B16-C13-B16 (0-5.041)
C12-F9-C12 (0-5.391) C13-F6-C13 (0-6.29)
C13-F8-C13 (0-8.986)

0% aC10: F2, F3, F4 b(24.261, 8.006) dB15: C10, C12 e(14.085)
C12: F1, F6, F7 (18.241, 6.079) B16: C13 (5.782)
C13: F5, F8, F9 (17.522, 5.782)

cC10-F2-C10 (0-8.986) C10-F3-C10 (0-7.189) fB15-C10-B15 (0- 8.006)
C10-F4-C10 (0-8.087) C12-F1-C12 (0-4.942) B15-C12-B15 (0-6.079)
C12-F6-C12 (0-6.290) C12-F7-C12 (0-7.189) B16-C13-B16 (0-5.782)
C13-F5-F8-C13 (0-3.145-12.131)
C13-F9-C13 (0-5.391)

40% C10: F1, F2, F3, F5 (24.261, 8.006) B15: C10, C12 (14.826)
C12: F4, F7, F9 (20.667, 6.820) B16: C13 (5.041)
C13: F6, F8 (15.276, 5.041)

C10-F1-F2-C10 (0-4.942-13.928) B15-C10-B15 (0-8.006)
C10-F3-C10 (0-7.189) C10-F5-C10 (0-3.145) B15-C12-B15 (0-6.820)
C12-F4-C12 (0-8.087) C12-F7-C12 (0-7.189) B16-C13-B16 (0-5.041)
C12-F9-C12 (0-5.391) C13-F6-C13 (0-6.29)
C13-F8-C13 (0-8.986)

Note:
(a) "C10: F2, F3, F4" denotes that the facility placement at location C10, with F2, F3, and F4 assigned to it.
(b) "(24.261, 8.006)" indicates that the facility will receive 24.261 metric tons of WSF and produce 8.006 metric tons of
pellets.
(c) "C10-F2-C10 (0-8.986)" means that the route begins from C10 with zero load, travels to F2, and ends the route back to
C10 with a load of 8.986 metric tons of WSF.
(d) "B15: C10, C12" denotes that B15 are assigned with C10 and C12.
(e) "(14.085)" indicates that the biorefinery receives 14.085 metric tons of pellets.
(f) "B15-C10-B15 (0- 8.006)" indicates the truck starts from B15 without any load, transports 8.006 metric tons of pellets
from C10, and returns to B15.
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Table 14: Effect of the transportation cost on network decisions.

Optimize First Echelon Decisions Second Echelon Decisions

-40% Decisions same as the original CO2 emission rates (0%)

0% aC10: F2, F3, F4 b(24.261, 8.006) dB15: C10, C12 e(14.085)
C12: F1, F6, F7 (18.241, 6.079) B16: C13 (5.782)
C13: F5, F8, F9 (17.522, 5.782)

cC10-F2-C10 (0-8.986) C10-F3-C10 (0-7.189) fB15-C10-B15 (0- 8.006)
C10-F4-C10 (0-8.087) C12-F1-C12 (0-4.942) B15-C12-B15 (0-6.079)
C12-F6-C12 (0-6.290) C12-F7-C12 (0-7.189) B16-C13-B16 (0-5.782)
C13-F5-F8-C13 (0-3.145-12.131)
C13-F9-C13 (0-5.391)

40% Decisions same as the original CO2 emission rates (0%)

Note:
(a) "C10: F2, F3, F4" denotes that the facility placement at location C10, with F2, F3, and F4 assigned to it.
(b) "(24.261, 8.006)" indicates that the facility will receive 24.261 metric tons of WSF and produce 8.006 metric tons of
pellets.
(c) "C10-F2-C10 (0-8.986)" means that the route begins from C10 with zero load, travels to F2, and ends the route back to
C10 with a load of 8.986 metric tons of WSF.
(d) "B15: C10, C12" denotes that B15 are assigned with C10 and C12.
(e) "(14.085)" indicates that the biorefinery receives 14.085 metric tons of pellets.
(f) "B15-C10-B15 (0- 8.006)" indicates the truck starts from B15 without any load, transports 8.006 metric tons of pellets
from C10, and returns to B15.

Figure 9 illustrates that the capacity of collection facilities profoundly affects all objective func-
tions. Reducing the capacity of collection facilities necessitates opening more facilities to collect
biomass. A 40% decrease in facility capacities leads to a 40.46% increase in total costs, as the need
for more facilities results in higher establishment costs. Additionally, increased facility openings
cause more people affected by locational decisions and might have higher CO2 emissions due to
the need for additional trucks. Conversely, the total cost and total affected people stay stagnant
with the capacity increment. The total CO2 emissions decrease until they reach a 20% increment
in capacity and then remain stable.
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Figure 9: Effect of the collection facility capacity on the objective functions: (a) The first objective function. (b) The second objective function.
(c) The third objective function.

Table 15 presents the impact of collection facility capacity on network decisions. The analysis
reveals that all decisions, including locational, allocation, and routing, are responsive to changes
in capacity. In the scenario of a 40% capacity increment, C10, C12, and C13 also emerge as pre-
ferred facility locations, but with different assignment, allocation, and routing decisions. A drastic
reduction of 40% in capacity requires all potential locations to open facilities. The sensitivity anal-
ysis reveals that all decisions (decision variables) are responsive to the uncertainty in the facility
capacity parameter.
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Table 15: Effect of the transportation cost on network decisions.

Optimize First Echelon Decisions Second Echelon Decisions

-40% C10: F1, F2 (13.928, 4.596) B15: C10, C11, C12 (14.085)
C11: F4, F6 (14.377, 4.744) B16: C13, C14 (5.782)
C12: F3, F7 (14.377, 4.744)
C13: F8, F9 (14.377, 4.744)
C14: F5 (3.145, 1.038)

C10-F1-F2-C10 (0-4.942-13.928) B15-C10-B15 (0-4.596)
C11-F4-C11 (0-8.087) C11-F6-C11 (0-6.290) B15-C11-B15 (0-4.744)
C12-F3-C12 (0-7.189) C12-F7-C12 (0-7.189) B15-C12-B15 (0-4.744)
C13-F8-C13 (0-8.986) C13-F9-C13 (0-5.391) B16-C14-C13-B16 (1.038-5.782)
C14-F5-C14 (0-3.145)

0% aC10: F2, F3, F4 b(24.261, 8.006) dB15: C10, C12 e(14.085)
C12: F1, F6, F7 (18.241, 6.079) B16: C13 (5.782)
C13: F5, F8, F9 (17.522, 5.782)

cC10-F2-C10 (0-8.986) C10-F3-C10 (0-7.189) fB15-C10-B15 (0- 8.006)
C10-F4-C10 (0-8.087) C12-F1-C12 (0-4.942) B15-C12-B15 (0-6.079)
C12-F6-C12 (0-6.290) C12-F7-C12 (0-7.189) B16-C13-B16 (0-5.782)
C13-F5-F8-C13 (0-3.145-12.131)
C13-F9-C13 (0-5.391)

40% C10: F1, F2, F3, F4, F5 (32.348, 10.675) B15: C10, C12 (15.123)
C12: F6, F7 (13.478, 4.448) B16: C13 (4.744)
C13: F8, F9 (14.377, 4.744)

C10-F1-C10 (0-4.942) C10-F2-C10 (0-8.986) B15-C10-B15 (0-10.675)
C10-F3-C10 (0-7.189) B15-C12-B15 (0-4.448)
C10-F4-F5-C10 (0-8.087-11.232) B16-C13-B16 (0-4.744)
C12-F6-C12 (0-6.29) C12-F7-C12 (0-7.189)
C13-F8-C13 (0-8.986) C13-F9-C13 (0-5.391)

Note:
(a) "C10: F2, F3, F4" denotes that the facility placement at location C10, with F2, F3, and F4 assigned to it.
(b) "(24.261, 8.006)" indicates that the facility will receive 24.261 metric tons of WSF and produce 8.006 metric tons of
pellets.
(c) "C10-F2-C10 (0-8.986)" means that the route begins from C10 with zero load, travels to F2, and ends the route back to
C10 with a load of 8.986 metric tons of WSF.
(d) "B15: C10, C12" denotes that B15 are assigned with C10 and C12.
(e) "(14.085)" indicates that the biorefinery receives 14.085 metric tons of pellets.
(f) "B15-C10-B15 (0- 8.006)" indicates the truck starts from B15 without any load, transports 8.006 metric tons of pellets
from C10, and returns to B15.

6 Conclusions

This research introduces a MINLP model for optimizing the Biomass Supply Chain (BSC)
dedicated to converting palm oil biomass into biofuels. The model incorporates several crucial
aspects:

1. SimultaneousDecisionOptimization: It proposes an innovative approach to BSC decision-
making by simultaneously optimizing locational, allocation, and routing decisions. This
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comprehensive perspective ensures that all components of the supply chain work optimally
together.

2. Quantification of Pretreatment Operation: Unlike previous models, this study quantifies
the pretreatment operation and integrates it as an additional parameter within the model.
This adds a layer of complexity and accuracy to the decision-making process.

3. Multi-Objective Optimization: Themodel addresses sustainability concerns frommultiple
dimensions, including economic, environmental, and social performance. It aims to mini-
mize costs, reduceCO2 emissions from transportation, and limit the total population affected
by facility locations.

In conducting computational experiments, the study assessed how themodel performs in both
single and multi-objective optimization scenarios. Single-objective optimization revealed that the
proposed objectives often contradict one another. While each objective optimizes well within its
respective dimension, achieving one objective without negatively impacting others is challenging.

In multi-objective optimization, the weighted sum approach was employed to combine all ob-
jective functions. The findings showed trade-offs between the sustainability dimensions. Environ-
mental performance was most affected, with a 43.9% increase in CO2 emissions. Economic perfor-
mance saw a negligible decline of 0.036%, and social performance decreased by 1.96%. Although
multi-objective optimization may not yield results as favorable as optimizing each dimension in-
dividually, it provides decisions that balance trade-offs among all sustainable goals. The study
emphasizes the significance of considering environmental and social impacts, as they profoundly
affect human well-being.

The in-depth sensitivity parameter analysis demonstrates that transportation costswield a sub-
stantial influence over both total expenses and CO2 emissions in the supply chain. However, lo-
cational decisions remain unaffected by this parameter. With a total of 60.203 metric tons of WSF
across all mills (F1 to F9), at least three collection facilities are necessary. Moreover, the model
must strike a balance among the three objective functions. Therefore, C10, C12, and C13 are con-
sistently recommended as the optimal locations for the test instance across all scenarios of per-
centage change. Although assignment, allocation, and routing decisions show some sensitivity to
transportation costs, their flexibility is constrained by fixed facility locations, truck capacities, and
demands. Consequently, their sensitivity to transportation costs is minimal.

Meanwhile, the CO2 emission rates exert their impact solely on the total CO2 emissions, with
none of the decision variables exhibiting sensitivity to uncertainties in CO2 emission rate param-
eters. These rates are linked to transportation distance and truck loads, often correlated with
facility locations, truck capacity, and demands. Despite changes in CO2 emission rates, decision-
making remains constrained by factors such as facility locations and capacity, truck capacity, and
demands, potentially explaining the lack of sensitivity in the model to CO2 emission rates.

The varying capacities of collection facilities exert a noticeable influence on all objective func-
tions, indicating the pivotal role this parameter plays in shaping various facets of the supply chain
network. All decisions, encompassing locational, assignment, allocation, production, and routing
decisions, demonstrate sensitivity to alternations in this parameter. Facility capacity directly af-
fects the amount of WSF that can be collected, impacting decision variables within the constraints
of truck capacity and demands. Reductions in facility capacity necessitate more facilities in the
supply chain to collect WSF, resulting in expected adjustments in other decision variables. These
findings highlight the model’s sensitivity to the facility capacity parameter.
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The research findings have several implications. Achieving all sustainable goals simultane-
ously can be challenging due to their inherent contradictions, necessitating trade-offs to be made.
Adjustments in facility location and vehicle routing decisions are crucial to address these trade-
offs effectively. Careful consideration should be given to factors such as truck conditions and fuel
types due to their effects on transportation costs and CO2 emission rates, which in turn influence
total expenses and emissions within the supply chain. However, uncertainties in transportation
costs have negligible impact on locational decisions and only limited effects on assignment, allo-
cation, production, and routing decisions. Similarly, uncertainties in CO2 emission rates do not
affect decision variables in network configuration. Conversely, uncertainties in the capacity of col-
lection facilities directly impact the achievement of all goals and decision variables, emphasizing
their importance in supply chain management and necessitating meticulous attention.

The implications of the research are contingent upon the underlying assumptions of themodel.
The model is designed to address the location-routing problem under specific conditions, includ-
ing the requirement that each mill be visited once and serve only one collection facility in the first
echelon, and that each open collection facility be visited once and serve only one biorefinery. These
assumptions limit the model’s ability to handle scenarios where mills may require multiple visits
or serve multiple facilities simultaneously in the first echelon, as well as analogous situations in
the second echelon. Additionally, the model exclusively accounts for homogeneous trucks.

This research offers both practical and academic contributions. It provides a sustainable frame-
work for industry professionals and policymakers to make strategic and operational decisions
within the BSC. The framework assists in determining the number and locations of collection fa-
cilities and operational aspects like vehicle routing, biomass and pretreated biomass allocation,
and pellet production. Moreover, the model is versatile and applicable to various facilities with
different technologies, extending its utility beyond pelletizing technology.

From an academic perspective, the model can be applied to any BSC that optimizes facility lo-
cations, allocation, and vehicle routing decisions. It accommodates both single andmulti-objective
optimization, making it a valuable tool for addressing complex supply chain challenges. Further-
more, its integration of pretreatment operations differentiates it from standard 2ELRP models.

However, the proposed model assumes a homogeneous fleet of trucks, imposes restrictions on
mill and collection facility visitation, and assigns equal importance to all objective functions during
multi-objective optimization. These assumptions may not always align with real-world scenarios.
Additionally, the model does not account for stochastic elements within the BSC. Future research
can focus on addressing these limitations to enhance the model’s applicability and accuracy.

Acknowledgement The authors sincerely appreciate Universiti Teknologi MARA (UiTM) and
TheMinistry of Higher EducationMalaysia (MOHE) for the funding provided through the Ph.D.
scholarship under the 2020 Academic Training Scheme for IPTA (SLAI). This work was also sup-
ported by Universiti Teknologi Malaysia (UTM), UTM Encouragement Research (UTMER) Grant
(Cost centre no: Q.J130000.3854.31J57).

Conflicts of Interest The authors declare no conflict of interest.

896



Foo, F. Y. et al. Malaysian J. Math. Sci. 18(4): 867–901(2024) 867 - 901

References

[1] M. Arabi, S. Yaghoubi & J. Tajik (2019). Algal biofuel supply chain network design with
variable demandunder alternative fuel price uncertainty: A case study. Computers&Chemical
Engineering, 130, Article ID: 106528. https://doi.org/10.1016/j.compchemeng.2019.106528.

[2] E. Asadi, F. Habibi, S. Nickel &H. Sahebi (2018). A bi-objective stochastic location-inventory-
routing model for microalgae-based biofuel supply chain. Applied Energy, 228, 2235–2261.
https://doi.org/10.1016/j.apenergy.2018.07.067.

[3] N. Z. Atashbar, N. Labadie & C. Prins (2016). Modeling and optimization of biomass supply
chains: A review and a critical look. International Journal of Production Research, 49(12), 604–
615. https://doi.org/10.1080/00207543.2017.1343506.

[4] J. X. Cao, X. Wang & J. Gao (2021). A two-echelon location-routing problem for
biomass logistics systems. Biosystems Engineering, 202, 106–118. https://doi.org/10.1016/
j.biosystemseng.2020.12.007.

[5] J. X. Cao, Z. Zhang & Y. Zhou (2021). A location-routing problem for biomass supply chains.
Computers & Industrial Engineering, 152, Article ID: 107017. https://doi.org/10.1016/j.cie.
2020.107017.

[6] L. E. Cárdenas-Barrón & R. A. Melo (2021). A fast and effective MIP-based heuristic for a
selective and periodic inventory routing problem in reverse logistics. Omega, 103, Article ID:
102394. https://doi.org/10.1016/j.omega.2021.102394.

[7] M. M. M. Chavez, Y. Costa & W. Sarache (2021). A three-objective stochastic location-
inventory-routing model for agricultural waste-based biofuel supply chain. Computers &
Industrial Engineering, 162, Article ID: 107759. https://doi.org/10.1016/j.cie.2021.107759.

[8] N. H. Che Hamzah, A. Yahya, H. Che Man & A. Samsu Baharuddin (2018). Effect of pre-
treatments on compost production from shredded oil palm empty fruit bunch with palm
oil mill effluent anaerobic sludge and chicken manure. BioResources, 13(3), 4998–5012.
https://doi.org/10.15376/biores.13.3.4998-5012.

[9] A. De Meyer, D. Cattrysse & J. Van Orshoven (2015). A generic mathematical model to opti-
mise strategic and tactical decisions in biomass-based supply chains (OPTIMASS). European
Journal of Operational Research, 245(1), 247–264. https://doi.org/10.1016/j.ejor.2015.02.045.

[10] J. E. Fokkema,M. J. Land, L. C. Coelho, H.Wortmann&G. B. Huitema (2020). A continuous-
time supply-driven inventory-constrained routing problem. Omega, 92, Article ID: 102151.
https://doi.org/10.1016/j.omega.2019.102151.

[11] Greenhouse gas protocol. Calculation tools. Emission Factors fromCross-Sector Tools. https:
//ghgprotocol.org/calculation-tools 2017. Accessed: 2023-01-12.

[12] F. Habibi, E. Asadi & S. J. Sadjadi (2018). A location-inventory-routing optimization model
for cost effective design of microalgae biofuel distribution system: A case study in Iran. En-
ergy strategy reviews, 22, 82–93. https://doi.org/10.1016/j.esr.2018.08.006.

[13] B. S. How & H. L. Lam (2017). Integrated biomass supply chain in Malaysia: A sustain-
able strategy. Chemical Engineering Transactions, 61, 1573–1578. https://doi.org/10.3303/
CET1761260.

897

https://doi.org/10.1016/j.compchemeng.2019.106528
https://doi.org/10.1016/j.apenergy.2018.07.067
https://doi.org/10.1080/00207543.2017.1343506
https://doi.org/10.1016/j.biosystemseng.2020.12.007
https://doi.org/10.1016/j.biosystemseng.2020.12.007
https://doi.org/10.1016/j.cie.2020.107017
https://doi.org/10.1016/j.cie.2020.107017
https://doi.org/10.1016/j.omega.2021.102394
https://doi.org/10.1016/j.cie.2021.107759
https://doi.org/10.15376/biores.13.3.4998-5012
https://doi.org/10.1016/j.ejor.2015.02.045
https://doi.org/10.1016/j.omega.2019.102151
https://ghgprotocol.org/calculation-tools
https://ghgprotocol.org/calculation-tools
https://doi.org/10.1016/j.esr.2018.08.006
https://doi.org/10.3303/CET1761260
https://doi.org/10.3303/CET1761260


Foo, F. Y. et al. Malaysian J. Math. Sci. 18(4): 867–901(2024) 867 - 901

[14] B. S. How, K. Y. Tan&H. L. Lam (2016). Transportation decision tool for optimisation of inte-
grated biomass flow with vehicle capacity constraints. Journal of Cleaner Production, 136(Part
B), 197–223. https://doi.org/10.1016/j.jclepro.2016.05.142.

[15] L. Jayarathna, G. Kent, I. O’Hara & P. Hobson (2020). A Geographical Information System
based framework to identify optimal location and size of biomass energy plants using single
or multiple biomass types. Applied energy, 275, Article ID: 115398. https://doi.org/10.1016/
j.apenergy.2020.115398.

[16] KULIM. Integrated annual report: Unleashing potential strategic initiatives. Technical re-
port KULIM Malaysia Berhad Johor, Malaysia 2019. https://kulim.com.my/storage/2023/
06/KULIM-IAR-2019.pdf.

[17] K. Laasasenaho, A. Lensu, R. Lauhanen & J. Rintala (2019). GIS-data related route optimiza-
tion, hierarchical clustering, location optimization, and kernel density methods are useful
for promoting distributed bioenergy plant planning in rural areas. Sustainable Energy Tech-
nologies and Assessments, 32, 47–57. https://doi.org/10.1016/j.seta.2019.01.006.

[18] H. L. Lam, W. P. Ng, R. T. Ng, E. H. Ng, M. K. A. Aziz & D. K. Ng (2013). Green strategy
for sustainable waste-to-energy supply chain. Energy, 57, 4–16. https://doi.org/10.1016/j.
energy.2013.01.032.

[19] P. Lamers, M. S. Roni, J. S. Tumuluru, J. J. Jacobson, K. G. Cafferty, J. K. Hansen, K. Kenney, F.
Teymouri & B. Bals (2015). Techno-economic analysis of decentralized biomass processing
depots. Bioresource technology, 194, 205–213. https://doi.org/10.1016/j.biortech.2015.07.009.

[20] E. León-Olivares, H. Minor-Popocatl, O. Aguilar-Mejía & D. Sánchez-Partida (2020). Opti-
mization of the supply chain in the production of ethanol from agricultural biomass using
mixed-integer linear programming (MILP): A case study. Mathematical Problems in Engineer-
ing, 2020(1), Article ID: 6029507. https://doi.org/10.1155/2020/6029507.

[21] S. Li, Z. Wang, X. Wang, D. Zhang & Y. Liu (2019). Integrated optimization model of a
biomass feedstock delivery problemwith carbon emissions constraints and split loads. Com-
puters & Industrial Engineering, 137, Article ID: 106013.

[22] N. Mahjoub, H. Sahebi, M. Mazdeh & A. Teymouri (2020). Optimal design of the second
and third generation biofuel supply network by a multi-objective model. Journal of Cleaner
Production, 256, Article ID: 120355. https://doi.org/10.1016/j.jclepro.2020.120355.

[23] K. T. Malladi, O. Quirion-Blais & T. Sowlati (2018). Development of a decision support tool
for optimizing the short-term logistics of forest-based biomass. Applied Energy, 216, 662–677.
https://doi.org/10.1016/j.apenergy.2018.02.027.

[24] S. Mani, S. Sokhansanj, X. Bi & A. Turhollow (2006). Economics of producing fuel pellets
from biomass. Applied Engineering in Agriculture, 22(3), 421–426. https://doi:10.13031/2013.
20447.

[25] M. A. Méndez-Vázquez, F. I. Gómez-Castro, J. M. Ponce-Ortega, A. H. Serafín-Muñoz, J. E.
Santibañez-Aguilar & M. M. El-Halwagi (2017). Mathematical optimization of a supply
chain for the production of fuel pellets from residual biomass. Clean Technologies and En-
vironmental Policy, 19, 721–734. https://doi.org/10.1007/s10098-016-1257-1.

[26] N. R.Menon, Z. Ab Rahman&N.A. Bakar (2003). Empty fruit bunches evaluation: Mulch in
plantation vs. fuel for electricity generation. Oil Palm Industry Economic Journal, 3(2), 15–20.

[27] F. Misni & L. S. Lee (2019). Harmony search for multi-depot vehicle routing problem.
Malaysian Journal of Mathematical Sciences, 13(3), 311–328.

898

https://doi.org/10.1016/j.jclepro.2016.05.142
https://doi.org/10.1016/j.apenergy.2020.115398
https://doi.org/10.1016/j.apenergy.2020.115398
https://kulim.com.my/storage/2023/06/KULIM-IAR-2019.pdf
https://kulim.com.my/storage/2023/06/KULIM-IAR-2019.pdf
https://doi.org/10.1016/j.seta.2019.01.006
https://doi.org/10.1016/j.energy.2013.01.032
https://doi.org/10.1016/j.energy.2013.01.032
https://doi.org/10.1016/j.biortech.2015.07.009
https://doi.org/10.1155/2020/6029507
https://doi.org/10.1016/j.jclepro.2020.120355
https://doi.org/10.1016/j.apenergy.2018.02.027
https://doi: 10.13031/2013.20447
https://doi: 10.13031/2013.20447
https://doi.org/10.1007/s10098-016-1257-1


Foo, F. Y. et al. Malaysian J. Math. Sci. 18(4): 867–901(2024) 867 - 901

[28] F. Misni & L. S. Lee (2021). Modified harmony search algorithm for location-inventory-
routing problem in supply chain network design with product returns. Malaysian Journal of
Mathematical Sciences, 15(1), 1–20.

[29] Official Portal of Ministry of Finance Malaysia. Retail price of petroleum
products from 8 December 2022 to 14 December 2022. Press Re-
lease. https://www.mof.gov.my/portal/en/news/press-release/retail-price/
retail-price-of-petroleum-products-from-1-december-2022-to-7-december-2022 2022.
Accessed: 2022-11-30.

[30] T. M. Pinho, J. P. Coelho, G. Veiga, A. P. Moreira & J. Boaventura-Cunha (2017). A multilayer
model predictive control methodology applied to a biomass supply chain operational level.
Complexity, 2017(1), Article ID: 5402896. https://doi.org/10.1155/2017/5402896.

[31] A. Rahman, H. I. Tan, W. Liew & N. S. Shahruddin (2020). Routing mail delivery from a
single depot with multiple delivery agents. Malaysian Journal of Mathematical Sciences, 14(S),
15–29.

[32] S. Razm, A. Dolgui, R. Hammami, N. Brahimi, S. Nickel & H. Sahebi (2021). A two-phase
sequential approach to design bioenergy supply chains under uncertainty and social con-
cerns. Computers & Chemical Engineering, 145, Article ID: 107131. https://doi.org/10.1016/j.
compchemeng.2020.107131.

[33] L. Rivera-Cadavid, P. C. Manyoma-Velásquez & D. F. Manotas-Duque (2019). Supply chain
optimization for energy cogeneration using sugarcane crop residues (SCR). Sustainability,
11(23), Article ID: 6565. https://doi.org/10.3390/su11236565.

[34] M. S. Roni, S. D. Eksioglu, K. G. Cafferty & J. J. Jacobson (2017). A multi-objective, hub-
and-spoke model to design and manage biofuel supply chains. Annals of Operations Research,
249(1), 351–380. https://doi.org/10.1007/s10479-015-2102-3.

[35] M. Saadati & S. J. Hosseininezhad (2019). Designing a hub location model in a bagasse-
based bioethanol supply chain network in Iran (case study: Iran sugar industry). Biomass
and Bioenergy, 122, 238–256. https://doi.org/10.1016/j.biombioe.2019.01.013.

[36] K. Sahoo, G. Hawkins, X. Yao, K. Samples & S. Mani (2016). GIS-based biomass assessment
and supply logistics system for a sustainable biorefinery: A case study with cotton stalks in
the Southeastern US. Applied Energy, 182, 260–273. https://doi.org/10.1016/j.apenergy.2016.
08.114.

[37] K. Sahoo, S. Mani, L. Das & P. Bettinger (2018). GIS-based assessment of sustainable crop
residues for optimal siting of biogas plants. Biomass and Bioenergy, 110, 63–74. https://doi.
org/10.1016/j.biombioe.2018.01.006.

[38] S. F. Salleh, M. F. Gunawan, M. F. Zulkarnain & A. Halim (2019). Modelling and optimiza-
tion of biomass supply chain for bioenergy production. Journal of Environmental Treatment
Techniques, 7(4), 689–695.

[39] J. L. G. San Juan, K. B. Aviso, R. R. Tan & C. L. Sy (2019). A multi-objective optimization
model for the design of biomass co-firing networks integrating feedstock quality considera-
tions. Energies, 12(12), Article ID: 2252. https://doi.org/10.3390/en12122252.

[40] B. R. Sarker, B. Wu & K. P. Paudel (2018). Optimal number and location of storage hubs
and biogas production reactors in farmlands with allocation of multiple feedstocks. Applied
Mathematical Modelling, 55, 447–465. https://doi.org/10.1016/j.apm.2017.11.010.

899

https://www.mof.gov.my/portal/en/news/press-release/retail-price/retail-price-of-petroleum-products-from-1-december-2022-to-7-december-2022
https://www.mof.gov.my/portal/en/news/press-release/retail-price/retail-price-of-petroleum-products-from-1-december-2022-to-7-december-2022
https://doi.org/10.1155/2017/5402896
https://doi.org/10.1016/j.compchemeng.2020.107131
https://doi.org/10.1016/j.compchemeng.2020.107131
https://doi.org/10.3390/su11236565
https://doi.org/10.1007/s10479-015-2102-3
https://doi.org/10.1016/j.biombioe.2019.01.013
https://doi.org/10.1016/j.apenergy.2016.08.114
https://doi.org/10.1016/j.apenergy.2016.08.114
https://doi.org/10.1016/j.biombioe.2018.01.006
https://doi.org/10.1016/j.biombioe.2018.01.006
https://doi.org/10.3390/en12122252
https://doi.org/10.1016/j.apm.2017.11.010


Foo, F. Y. et al. Malaysian J. Math. Sci. 18(4): 867–901(2024) 867 - 901

[41] B. R. Sarker, B. Wu & K. P. Paudel (2019). Modeling and optimization of a supply chain
of renewable biomass and biogas: Processing plant location. Applied Energy, 239, 343–355.
https://doi.org/10.1016/j.apenergy.2019.01.216.

[42] T. Schröder, L.-P. Lauven & J. Geldermann (2018). Improving biorefinery planning: Inte-
gration of spatial data using exact optimization nested in an evolutionary strategy. European
Journal of Operational Research, 264(3), 1005–1019. https://doi.org/10.1016/j.ejor.2017.01.016.

[43] A. Serrano-Hernandez & J. Faulin (2019). Locating a biorefinery in northern Spain: Decision
making and economic consequences. Socio-Economic Planning Sciences, 66, 82–91. https://doi.
org/10.1016/j.seps.2018.07.012.

[44] J. She, W. Chung & H. Han (2019). Economic and environmental optimization of the for-
est supply chain for timber and bioenergy production from beetle-killed forests in northern
Colorado. Forests, 10(8), Article ID: 689. https://doi.org/10.3390/f10080689.

[45] R. Soares, A. Marques, P. Amorim & J. Rasinmäki (2019). Multiple vehicle synchronisation
in a full truck-load pickup and delivery problem: A case-study in the biomass supply chain.
European Journal of Operational Research, 277(1), 174–194. https://doi.org/10.1016/j.ejor.2019.
02.025.

[46] T. Soha, L. Papp, C. Csontos & B. Munkácsy (2021). The importance of high crop residue
demand on biogas plant site selection, scaling and feedstock allocation – A regional scale
concept in a Hungarian study area. Renewable and Sustainable Energy Reviews, 141, Article ID:
110822. https://doi.org/10.1016/j.rser.2021.110822.

[47] A. Sultana, A. Kumar & D. Harfield (2010). Development of agri-pellet production cost and
optimum size. Bioresource technology, 101(14), 5609–5621. https://doi.org/10.1016/j.biortech.
2010.02.011.

[48] S. Tiammee & C. Likasiri (2020). Sustainability in corn production management: A multi-
objective approach. Journal of Cleaner Production, 257, Article ID: 120855. https://doi.org/10.
1016/j.jclepro.2020.120855.

[49] E. B. Tirkolaee, P. Abbasian & G.-W. Weber (2021). Sustainable fuzzy multi-trip location-
routing problem formedicalwastemanagement during theCOVID-19 outbreak. Science of the
Total Environment, 756, Article ID: 143607. https://doi.org/10.1016/j.scitotenv.2020.143607.

[50] L. Torjai & F. Kruzslicz (2016). Mixed integer programming formulations for the biomass
truck scheduling problem. Central European Journal of Operations Research, 24, 731–745. https:
//doi.org/10.1007/s10100-015-0395-6.

[51] M. Vahdanjoo, M. Nørremark & C. G. Sørensen (2021). A system for optimizing the pro-
cess of straw bale retrieval. Sustainability, 13(14), Article ID: 7722. https://doi.org/10.3390/
su13147722.

[52] R. Wang, S. Chang, X. Cui, J. Li, L. Ma, A. Kumar, Y. Nie & W. Cai (2021). Retrofitting
coal-fired power plants with biomass co-firing and carbon capture and storage for net zero
carbon emission: A plant-by-plant assessment framework. GCB Bioenergy, 13(1), 143–160.
https://doi.org/10.1111/gcbb.12756.

[53] H. Woo, M. Acuna, M. Moroni, M. S. Taskhiri & P. Turner (2018). Optimizing the location
of biomass energy facilities by integrating multi-criteria analysis (MCA) and geographical
information systems (GIS). Forests, 9(10), Article ID: 585. https://doi.org/10.3390/f9100585.

900

https://doi.org/10.1016/j.apenergy.2019.01.216
https://doi.org/10.1016/j.ejor.2017.01.016
https://doi.org/10.1016/j.seps.2018.07.012
https://doi.org/10.1016/j.seps.2018.07.012
https://doi.org/10.3390/f10080689
https://doi.org/10.1016/j.ejor.2019.02.025
https://doi.org/10.1016/j.ejor.2019.02.025
https://doi.org/10.1016/j.rser.2021.110822
https://doi.org/10.1016/j.biortech.2010.02.011
https://doi.org/10.1016/j.biortech.2010.02.011
https://doi.org/10.1016/j.jclepro.2020.120855
https://doi.org/10.1016/j.jclepro.2020.120855
https://doi.org/10.1016/j.scitotenv.2020.143607
https://doi.org/10.1007/s10100-015-0395-6
https://doi.org/10.1007/s10100-015-0395-6
https://doi.org/10.3390/su13147722
https://doi.org/10.3390/su13147722
https://doi.org/10.1111/gcbb.12756
https://doi.org/10.3390/f9100585


Foo, F. Y. et al. Malaysian J. Math. Sci. 18(4): 867–901(2024) 867 - 901

[54] F. F. Yeng, Z. M. Zainuddin &H. S. Pheng (2024). Optimizing palm oil biomass supply chain
logistics through multi-objective location-routing model. Malaysian Journal of Fundamental
and Applied Sciences, 20(2), 247–265. https://doi.org/10.11113/mjfas.v20n2.3085.

[55] D. S. Zamar, B. Gopaluni& S. Sokhansanj (2017). Optimization of sawmill residues collection
for bioenergy production. Applied Energy, 202, 487–495. https://doi.org/10.1016/j.apenergy.
2017.05.156.

[56] F. Zhang, D. Johnson, M. Johnson, D. Watkins, R. Froese & J. Wang (2016). Decision sup-
port system integrating GIS with simulation and optimisation for a biofuel supply chain.
Renewable Energy, 85, 740–748. https://doi.org/10.1016/j.renene.2015.07.041.

[57] F. Zhang, J. Wang, S. Liu, S. Zhang & J. W. Sutherland (2017). Integrating GIS with opti-
mization method for a biofuel feedstock supply chain. Biomass and Bioenergy, 98, 194–205.
https://doi.org/10.1016/j.biombioe.2017.01.004.

[58] X. G. Zhao & A. Li (2016). A multi-objective sustainable location model for biomass power
plants: Case of China. Energy, 112, 1184–1193. https://doi.org/10.1016/j.energy.2016.07.011.

901

https://doi.org/10.11113/mjfas.v20n2.3085
https://doi.org/10.1016/j.apenergy.2017.05.156
https://doi.org/10.1016/j.apenergy.2017.05.156
https://doi.org/10.1016/j.renene.2015.07.041
https://doi.org/10.1016/j.biombioe.2017.01.004
https://doi.org/10.1016/j.energy.2016.07.011

	Introduction
	Literature Review 
	Problem Definition and Assumptions 
	Problem definition
	Assumptions

	Mathematical Model 
	The objective functions
	The first echelon constraints
	The second echelon constraints
	Multi-objective optimization

	Results and Discussion 
	Data and parameter setting
	Result analysis
	Sensitivity analysis

	Conclusions

